1	$\begin{aligned} & \mathrm{t}=5 / 1.2 \\ & \mathrm{t}=4.17 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 5=1.2 \mathrm{t} \text { or } 0=5-1.2 \mathrm{t} \\ & 41 / 6 \mathrm{~s}, 4.166 \text { or better, } 4.16 \text { recurring. } \end{aligned}$	
ii	$\begin{aligned} & \mathrm{s}=(-5)^{2} / 2 \times 1.2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & \text { OR }(u \operatorname{sing}(i)) \\ & \mathrm{s}=5 \times 4.17-1.2 \times 4.17^{2} / 2 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & O R(u \operatorname{sing}(i)) \\ & \mathrm{s}=(5(+0)) / 2 \times 4.17 \\ & \mathrm{~s}=10.4 \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	$\mathrm{s}=5^{2} / 2 \times 1.2 \text { or } 5^{2}=2 \times 1.2 \mathrm{~s} \text { or } 0=5^{2}-2 \times 1.2 \mathrm{~s}$ Accept $105 / 12$, but not 10 Time must be >0. Accept $\|t\|$ from (i) Award if \|-4.17	used.
iii	$\begin{aligned} & \mathrm{Fr}=3 \mathrm{x} 1.2 \\ & \mathrm{R}=3 \mathrm{x} 9.8 \\ & \mu=(3 \mathrm{x}) 1.2 /(3 \mathrm{x}) 9.8 \\ & \mu=0.122 \\ & O R \\ & \mathrm{R}=3 \mathrm{x} 9.8 \\ & \text { Mass x acceleration }=+/-3 \times 1.2 \\ & +/-\mu \text { x29.4 }=+/-3 \mathrm{x} 1.2 \\ & \mu=0.122 \end{aligned}$	B1 B1 M1 A1 [4] B1 B1 M1 A1	Accept 3.6, +/- Accept 3g, +/- Ratio of 2 positive numerical force terms Not 0.12 Accept 3g, +/- Either both positive or both negative.	

2	$\begin{aligned} & \hline+/-(0.4 \times 3-0.6 \times 1.5) \\ & +/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.4 \times 0.1+0.6 \mathrm{v}) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & O R \\ & +/-(0.4 \times 3-0.4 \times 0.1)=+/-1.16 \\ & (0.6 \mathrm{v}+0.6 \times 1.5)=0.6 \mathrm{v}+0.9 \\ & 1.16=+/-(0.6 \mathrm{v}+0.9) \\ & \text { speed }\|\mathrm{v}\|=0.433 \mathrm{~ms}^{-1} \\ & \hline \end{aligned}$	B1 B1 M1 A1 $[4]$ B1 B1 M1 A1	$+/-0.3$ Nb the terms have same signs Equating their total mom before \& after Accept $13 / 30$ or 0.43 recurring, but not 0.43 Momentum change of P Momentum change of Q Equating momentum changes $0.26 / 0.6=v$
ii	$\begin{aligned} & +/-(0.4 \times 0.1-0.6 \mathrm{v}) \\ & (0.4 \times 3-0.6 \times 1.5)=+/-(0.6 \mathrm{v}-0.4 \mathrm{x} 0.1) \\ & \mathrm{v}=0.567 \\ & \mathrm{PQ}=0.1 \mathrm{x} 3+0.567 \mathrm{x} 3 \\ & \mathrm{PQ}=2 \mathrm{~m} \\ & O R \\ & +/-0.4 \times 3+0.4 \times 0.1 \text { and }+/-0.6 \mathrm{v}+0.6 \times 1.5 \\ & 1.24=+/-0.6 \mathrm{v}+0.9 \\ & \mathrm{v}=0.567 \end{aligned}$ etc	B1 M1 A1 M1 A1 $[5]$ B1 M1 A1	Nb the terms have different signs Must use +/- same before momentum as in (i) May be implied, or in any format ($0.1+0.567$)x3 Accept 2.00(1), 2.0, 2.00 Both must be correct Equating change in momentum May be implied, or in any format

3	$\begin{aligned} & \mathrm{H}=+/-(9-5 \cos 60) \\ & \mathrm{H}=6.5 \mathrm{~N} \end{aligned}$	AG	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	+/-(9+5cos120)
ii	$\begin{aligned} & \mathrm{V}=+/-(12-5 \sin 60) \\ & \mathrm{V}=7.67 \mathrm{~N} \end{aligned}$		$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	$+/-(12+5 \cos 150)$ Accept 7.666 or better, or 7.6 recurring
iii	$\begin{aligned} & \mathrm{R}^{2}=6.5^{2}+7.67^{2} \\ & \mathrm{R}=10.1 \mathrm{~N} \\ & \tan \mathrm{~A}=6.5 / 7.67 \text { or } 7.67 / 6.5 \\ & \mathrm{~A}=40(.3) \text { or } 49.7 \\ & \text { Bearing }=320^{\circ} \end{aligned}$		M1 A1 M1 A1 A1 [5]	Uses Pythagoras on forces V(ii) and 6.5 10.053.. Uses trigonometry in relevant triangle May be implied by final answer As this is not a final answer, exact accuracy is not an issue Or better

4	$\begin{aligned} & 3.2-0.2 t^{2}=0 \\ & t=4 \mathrm{~s} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Puts 0 for v and attempts to solve QE Accept dual solution +/-4
ii	$\begin{aligned} & \mathrm{a}=-2 \mathrm{x} 0.2 \mathrm{t} \\ & \mathrm{a}=-0.4 \times 4 \\ & \mathrm{a}=-1.6 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { D}^{*} \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Differentiates v Substitutes +ve $\mathrm{t}(\mathrm{i})$ in derivative of v Negative only
iii	$\begin{aligned} & s=3.2 \mathrm{t}-0.2 \mathrm{t}^{3} / 3(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{~s}=0 \mathrm{soc}=0 \\ & \mathrm{~s}(4)=3.2 \mathrm{x} 4-0.2 \times 4^{3} / 3 \\ & \mathrm{~s}=8.53 \mathrm{~m} \end{aligned}$	M1* A1 B1 D*M1 A1 [5]	Integrates v , not multiplication by t Or correct use of limits 0 and 4 Accept without/loss of c 8 8/15 Accept with/without c

5 i	$\begin{aligned} & +/-3 \times 20 / 2 \\ & 30 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Use area of scalene triangle(s). Not suvat. Accept -30
ii	$\begin{aligned} & (\mathrm{t}+4) \mathrm{x} 3 / 2=30 \text { or } 3 \mathrm{t} / 2=30-4 \mathrm{x} 3 \\ & \mathrm{t}=16 \text { or } \mathrm{t}=12 \\ & \mathrm{~T}=76 \end{aligned}$	M1 A1 A1 A1 [4]	Equates scalene trapezium area to distance (i) $[(T-60)+4] \times 3 / 2=30$, award A2
iii	$\begin{aligned} & \mathrm{T}(\mathrm{accn})=3 / 0.4 \quad(=7.5 \mathrm{~s}) \\ & \operatorname{decn}=3 /([76-60]-4-7.5) \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \\ & O R \\ & \mathrm{~S}(\mathrm{accn})=3^{2} /(2 \times 0.4) \quad(=11.25 \mathrm{~m}) \\ & \operatorname{decn}=3^{2} /[2 \mathrm{x}(30-3 \times 4-11.25)] \\ & \operatorname{decn}=(+/-) 2 / 3 \mathrm{~ms}^{-2} \end{aligned}$	B1 M1 A1 [3] B1 M1 A1	Or 3 = decn x ([76-60] - 4-7.5) (+/-) 0.667 or better - accept 0.6 recurring (+/-) 0.667 or better - accept 0.6 recurring

6	$\mathrm{T}-0.85 \mathrm{~g} \sin 30=0.85 \mathrm{a}$	B1	Either equation correct
i	$0.55 \mathrm{~g}-\mathrm{T}=0.55 \mathrm{a}$	B1	Both eqns correct and consistent ' a ' direction
a	$\mathrm{a}=1.225 / 1.4$	M1	Solves 2 sim eqn
	$\mathrm{a}=0.875$	A1	
	$\mathrm{T}=4.91$	A1 [5]	4.908 or better - has to be positive
b	$\mathrm{F}=2 \mathrm{~T} \cos 30$	M1	Or Pythagoras or cosine rule
	$\mathrm{F}=8.5$ (02..)	A1ft [2]	$\operatorname{cv}(4.91) \mathrm{x} \sqrt{ } 3$
ii		M1	Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{a}(1.5)$, u non-zero, a from (i)
	$\mathrm{v}^{2}=1.3^{2}+2 \mathrm{x} 0.875 \times 1.5(=4.315)$	A1ft	$\mathrm{v}=2.077 \ldots . .\left(\mathrm{v}^{2}=1.69+3 \mathrm{xcv}(0.875)\right)$
	$\mathrm{a}=+/-\mathrm{gsin} 30$	B1	$\mathrm{a}=+/-4.9$
	$0=4.315-2 \mathrm{x} 4.9 \mathrm{~s}$	M1	Uses $0^{2}=u^{2}+/-2 a s$, with a not g or (i), u not1.3
	($\mathrm{s}=0.44 \ldots$)	A1	May be implied - need not be 3sf
	$\mathrm{S}=1.94$	A1 [6]	

7	$\begin{aligned} & \mathrm{Fr}=4+5 \sin 60 \\ & \mathrm{Fr}=8.33 \\ & \mathrm{R}=12-5 \cos 60 \\ & \mathrm{R}=9.5 \\ & \mu=(4+5 \sin 60) /(12-5 \cos 60) \\ & \mu=0.877 \end{aligned}$	M1 A1 M1 A1 M1 A1 [6]	All 4 + component 5 (4 + 4.333(01)) May be implied +/-(All 12 - component 5 (12-2.5)) May be implied, +ve from correct work Friction/Reaction, $\mathrm{Fr}>4, \mathrm{R}<12$, both positive
ii	$\begin{aligned} & \text { Upper block } \\ & \mu=5 \sin 60 /(9-5 \cos 60) \quad(=4.3 / 6.5) \\ & \mu=0.666 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ [2]	(Component 5)/(9-component 5)
iii	Upper mass $=9 / \mathrm{g}$ (9/g)a $=5 \sin 60-0.1(9-5 \cos 60)$ $\mathrm{a}=4.01$ Lower mass Tractive force $=4+0.1(9-5 \cos 60)(=4.65)$ Max Friction $=0.877(3+(9-5 \cos 60)(=8.33)$ Tractive force < Max Friction $\mathrm{a}=0$ OR for Lower Mass $\mathrm{ma}=4+0.1(9-5 \cos 60)-0.877(3+9-5 \cos 60)$ -ve a caused by friction impossible, hence $\mathrm{a}=0$	B1 M1 A1 M1 A1 A1 [6] M1 A1 A1	0.918(36..) N2L $0.918(36 .) a=.4.33(01 .)-.0.1 \times 6.5$ where friction $=0.1 \mathrm{x}(9-$ component 5$)$ Compares TF (tractive force) and max friction N2L with 3 force terms:

